An ab initio Study of the Bonding in Molecular Phosphorus and Nitrogen

By I. H. HILLIER* and V. R. SAUNDERS

(Department of Chemistry, The University, Manchester M13 9PL)

Summary All-electron ab initio SCF-MO calculations show that the inclusion of phosphorus 3*d*-orbitals is not necessary to account for the stability of P_4 with respect to P_2 , and also predict the corresponding instability of N_4 .

SPECULATION continues as to the origin of the stability of P_4 and the presumed instability of N_4 compared with that of the corresponding diatomic molecule. A recent semiempirical calculation¹ suggested that the contribution of phosphorus 3*d*-orbitals to the bonding in P_4 was the main reason for its increased stability over that of P_2 . However, a previous semi-empirical study² concluded that the inclusion of 3*d*-functions was not necessary for a consideration of the observed spectrum of P_4 .

In view of the possible unreliability of semi-empirical schemes, particularly when small energy differences are concerned, we here report the results of all-electron *ab initio* self-consistent field molecular orbital calculations on the species P_4 and N_4 , and the corresponding diatomic molecules. A minimal basis of Slater-type orbitals (STO's) was used

with best atom exponents,³ integral evaluation being accomplished by fitting each STO to three Gaussian type functions by a least-squares procedure.⁴ Bond lengths in

that of the σ -bond, whereas in P₂ they are weaker. Hence the formation of σ -type bonds will be more favoured in P_4 than in N₄.

	Total molecular energy (a.u.)	Orbital populations		Overlap populations	
N_2	$-107 \cdot 468240$	2 s	1.745	2s - 2s	-0.293
		$2p_{\pi}$	2.000	$2s-2p_{\sigma}$	0.112
		$2p_{\sigma}$	1.257	$2p_{\pi}$ - $2p_{\pi}$	0 ·904
				$2p_{\sigma}-2p_{\sigma}$	0.452
N4ª	-214.735861	2s	1.855	2s-2s	-0.129
		$2p_{\pi}$	2.092	$2s-2p_{\sigma}$	-0.010
		$2p_{\sigma}$	1.055	$2p_{\pi}-2p_{\pi}$	0.004
		_		$2p_{\sigma}-2p_{\sigma}$	0.409
P_2	$-674 \cdot 011396$	3 s	1.855	3s-3s	-0.141
		$3p_{\pi}$	2.033	$3s-3p_{\sigma}$	0.002
		$3p_{\sigma}$	1.162	$3p_{\pi}-3p_{\pi}$	0.788
				$3p_{\sigma}-3p_{\sigma}$	0.578
P_4^a	-1348.079358	3 s	1.901	35-35	-0.069
		$3p_{\pi}$	2.099	$3s-3p_{\sigma}$	-0.040
		$3p_{\sigma}$	1.056	$3p_{\pi}-3p_{\pi}$	-0.001
				$3p_{\sigma}-3p_{\sigma}$	0.484

⁸ σ and π refer to an interatomic axis.

 P_4 , P_2 , and N_2 were taken from experiment,⁵ the value for tetrahedral N_4 (1·47Å) being that in hydrazine.⁵

The results of the calculations are summarized in the Table. The calculations predict P_4 to be stable with respect to two $\rm P_2$ molecules by 0.056566 a.u. (35 kcal) and $\rm N_4$ to be correspondingly unstable by 0.200619 a.u. (126 kcal). The origin of this difference is suggested by examination of the Mulliken overlap populations (Table). On formation of the tetra-atomic from the diatomic molecule, two π -bonds are broken to form the "bent bonds" of predominantly σ -character. In N₂ the overlap populations indicate that the π -bonds have a strength comparable with

The calculated stability of P_4 (35 kcal) is rather less than the experimental value (55 kcal).⁶ However, these calculations show that a minimal basis can reproduce the observed stability of P_4 and that the inclusion of 3*d*-orbitals will probably not add significantly to the chemical description of the bonding although an improved binding energy may result. This is in accord with calculations on P_{2} ,⁷ where the phosphorus 3d-orbital population is only 0.17e, and with our previous calculations⁸ on phosphorus containing molecules where 3d-orbitals do not contribute significantly to the bonding when the valency of phosphorus remains at three.

(Received, July 31st, 1970; Com. 1268.)

¹ R. M. Archibald and P. G. Perkins, Chem. Comm., 1970, 569.

² R. M. Alchibalt and F. G. Ferkins, *Chem. Comm.*, 1510, 505.
² R. R. Hart, M. B. Robin, and N. A. Kuebler, J. Chem. Phys., 1965, 42, 3631.
³ E. Clementi and D. L. Raimondi, J. Chem. Phys., 1963, 38, 2686.
⁴ W. J. Hehre, R. F. Stewart, and J. A. Pople, Symposium of the Faraday Society, 1968, No. 2, p. 15; I. H. Hillier and V. R. Saunders, Internat. J. Quantum Chem., 1970, 4, 203.
⁵ Understand T. G. Stewart, and J. A. Pople, Symposium of the Faraday Society, 1968, No. 2, p. 15; I. H. Hillier and V. R. Saunders, Internat. J. Quantum Chem., 1970, 4, 203. ⁵ "Tables of interatomic distances in molecules and ions," Chem. Soc. Special Publ. No. 11, 1958.
⁶ D. R. Stull, "JANAF Thermochemical Tables," Dow Chemical Co., Midland, Michigan, 1965.
⁷ D. B. Boyd and W. N. Lipscomb, J. Chem. Phys., 1967, 46, 910.
⁸ I. H. Hillier and V. R. Saunders, Chem. Comm., 1970, 316.